Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Sci ; 280: 197-205, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30823998

RESUMO

Cecropin-B (CecB) is a peptide with well-established antimicrobial properties against different phytopathogenic bacteria. Despite modest action against Ralstonia solanacearum, its animal source limits the acceptance in transgenic applications. To overcome this, we selected eight alpha-helical (AH) cationic peptides derived from plant protein sequences and investigated their antimicrobial properties against R. solanacearum. Remarkably, PPC20 (a linear AH-peptide present in phosphoenolpyruvate carboxylase) has a three-fold lower lethal dose on R. solanacearum than CecB and lower toxicity to human intestinal epithelial cells. Linking PPC20 to SlP14a (part of a pathogenesis-related protein) established an apoplast-targeted protein providing a means of secreting and stabilizing the antimicrobial peptide in the plant compartment colonized by the pathogen. SlP14a is also a potential antimicrobial, homologous to a human elastase which likely targets outer membrane proteins in Gram-negative bacteria. Recombinant SlP14a-PPC20 showed antibacterial activity against R. solanacearum in vitro, making it a promising candidate for plant protection. This was confirmed with genetically-modified tomato plants engineered to express SlP14a-PPC20, in which bacterial populations in stems were reduced compared to inoculated wild-type control plants. Disease symptoms were also markedly less severe in SlP14a-PPC20-expressing plants, demonstrating a viable strategy to improve resistance against bacterial wilt in tomato.


Assuntos
Antibacterianos/farmacologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/farmacologia , Ralstonia solanacearum/efeitos dos fármacos , Ralstonia solanacearum/patogenicidade , Solanum lycopersicum/microbiologia , Doenças das Plantas/prevenção & controle
2.
Front Plant Sci ; 10: 84, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30787937

RESUMO

A field study showed that transgenic grapevine rootstocks can provide trans-graft-mediated protection to a wild type scion against Pierce's disease (PD) development. We individually field-tested two distinct strategies. The first expressed a chimeric antimicrobial protein (CAP) that targeted the functionality of the lipopolysaccharide (LPS) surface of Xylella fastidiosa (Xf), the causative agent of PD. The second expressed a plant polygalacturonase inhibitory protein (PGIP) that prevents PD by inhibiting breakdown of pectin present in primary cell walls. Both proteins are secreted to the apoplast and then into the xylem, where they migrate past the graft union, transiting into the xylem of the grafted scion. Transgenic Vitis vinifera cv. Thompson Seedless (TS) expressing ether CAP or PGIP were tested in the greenhouse and those lines that showed resistance to PD were grafted with wild type TS scions. Grafted grapevines were introduced into the field and tested over 7 years. Here we present data on the field evaluation of trans-graft protection using four CAP and four PGIP independent rootstock lines, compared to an untransformed rootstock. There was 30 to 95% reduction in vine mortality among CAP- and PGIP-expressing lines after three successive yearly infections with virulent Xf. Shoot tissues grafted to either CAP or PGIP transgenic rootstocks supported lower pathogen titers and showed fewer disease symptoms. Grafted plants on transgenic rootstocks also had more spring bud break following infection, more shoots, and more vigorous growth compared to those grafted to wild type rootstocks. No yield penalty was observed in the transgenic lines and some PGIP-expressing vines had enhanced yield potential. Trans-graft protection is an efficient way to protect grape scions against PD while preserving their valuable varietal genotypes and clonal properties.

3.
Front Plant Sci ; 9: 771, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29937771

RESUMO

Pierce's disease is a major threat to grapevines caused by the bacterium Xylella fastidiosa. Although devoid of a type 3 secretion system commonly employed by bacterial pathogens to deliver effectors inside host cells, this pathogen is able to influence host parenchymal cells from the xylem lumen by secreting a battery of hydrolytic enzymes. Defining the cellular and biochemical changes induced during disease can foster the development of novel therapeutic strategies aimed at reducing the pathogen fitness and increasing plant health. To this end, we investigated the transcriptional, proteomic, and metabolomic responses of diseased Vitis vinifera compared to healthy plants. We found that several antioxidant strategies were induced, including the accumulation of gamma-aminobutyric acid (GABA) and polyamine metabolism, as well as iron and copper chelation, but these were insufficient to protect the plant from chronic oxidative stress and disease symptom development. Notable upregulation of phytoalexins, pathogenesis-related proteins, and various aromatic acid metabolites was part of the host responses observed. Moreover, upregulation of various cell wall modification enzymes followed the proliferation of the pathogen within xylem vessels, consistent with the intensive thickening of vessels' secondary walls observed by magnetic resonance imaging. By interpreting the molecular profile changes taking place in symptomatic tissues, we report a set of molecular markers that can be further explored to aid in disease detection, breeding for resistance, and developing therapeutics.

4.
Sci Rep ; 6: 31098, 2016 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-27492542

RESUMO

Pierce's disease (PD) is a deadly disease of grapevines caused by the Gram-negative bacterium Xylella fastidiosa. Though disease symptoms were formerly attributed to bacteria blocking the plant xylem, this hypothesis is at best overly simplistic. Recently, we used a proteomic approach to characterize the secretome of X. fastidiosa, both in vitro and in planta, and identified LesA as one of the pathogenicity factors of X. fastidiosa in grapevines that leads to leaf scorching and chlorosis. Herein, we characterize another such factor encoded by PD0956, designated as an antivirulence secreted protease "PrtA" that displays a central role in controlling in vitro cell proliferation, length, motility, biofilm formation, and in planta virulence. The mutant in X. fastidiosa exhibited reduced cell length, hypermotility (and subsequent lack of biofilm formation) and hypervirulence in grapevines. These findings are supported by transcriptomic and proteomic analyses with corresponding plant infection data. Of particular interest, is the hypervirulent response in grapevines observed when X. fastidiosa is disrupted for production of PrtA, and that PD-model tobacco plants transformed to express PrtA exhibited decreased symptoms after infection by X. fastidiosa.


Assuntos
Biofilmes/crescimento & desenvolvimento , Metaloendopeptidases/metabolismo , Doenças das Plantas/microbiologia , Vitis/microbiologia , Xylella/fisiologia , Xylella/patogenicidade , Perfilação da Expressão Gênica , Técnicas de Inativação de Genes , Locomoção , Metaloendopeptidases/genética , Proteômica , Nicotiana/microbiologia , Virulência , Xylella/citologia , Xylella/genética
5.
PeerJ ; 4: e2007, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27257535

RESUMO

Background. Xylella fastidiosa, the causative agent of various plant diseases including Pierce's disease in the US, and Citrus Variegated Chlorosis in Brazil, remains a continual source of concern and economic losses, especially since almost all commercial varieties are sensitive to this Gammaproteobacteria. Differential expression of proteins in infected tissue is an established methodology to identify key elements involved in plant defense pathways. Methods. In the current work, we developed a methodology named CHURNER that emphasizes relevant protein functions from proteomic data, based on identification of proteins with similar structures that do not necessarily have sequence homology. Such clustering emphasizes protein functions which have multiple copies that are up/down-regulated, and highlights similar proteins which are differentially regulated. As a working example we present proteomic data enumerating differentially expressed proteins in xylem sap from grapevines that were infected with X. fastidiosa. Results. Analysis of this data by CHURNER highlighted pathogenesis related PR-1 proteins, reinforcing this as the foremost protein function in xylem sap involved in the grapevine defense response to X. fastidiosa. ß-1, 3-glucanase, which has both anti-microbial and anti-fungal activities, is also up-regulated. Simultaneously, chitinases are found to be both up and down-regulated by CHURNER, and thus the net gain of this protein function loses its significance in the defense response. Discussion. We demonstrate how structural data can be incorporated in the pipeline of proteomic data analysis prior to making inferences on the importance of individual proteins to plant defense mechanisms. We expect CHURNER to be applicable to any proteomic data set.

7.
Sci Rep ; 6: 18598, 2016 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-26753904

RESUMO

Pierce's disease (PD) of grapevines is caused by Xylella fastidiosa (Xf), a xylem-limited gamma-proteobacterium that is responsible for several economically important crop diseases. The occlusion of xylem elements and interference with water transport by Xf and its associated biofilm have been posited as the main cause of PD symptom development; however, Xf virulence mechanisms have not been described. Analysis of the Xf secretome revealed a putative lipase/esterase (LesA) that was abundantly secreted in bacterial culture supernatant and was characterized as a protein ortholog of the cell wall-degrading enzyme LipA of Xanthomonas strains. LesA was secreted by Xf and associated with a biofilm filamentous network. Additional proteomic analysis revealed its abundant presence in outer membrane vesicles (OMVs). Accumulation of LesA in leaf regions associated positively with PD symptoms and inversely with bacterial titer. The lipase/esterase also elicited a hypersensitive response in grapevine. Xf lesA mutants were significantly deficient for virulence when mechanically inoculated into grapevines. We propose that Xf pathogenesis is caused by LesA secretion mediated by OMV cargos and that its release and accumulation in leaf margins leads to early stages of observed PD symptoms.


Assuntos
Esterases/genética , Lipase/genética , Vitis/microbiologia , Xylella/fisiologia , Esterases/metabolismo , Regulação Bacteriana da Expressão Gênica , Lipase/metabolismo , Mutação , Fenótipo , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Folhas de Planta/fisiologia , Transporte Proteico , Proteômica/métodos , Percepção de Quorum/genética , Vesículas Secretórias/metabolismo , Vesículas Secretórias/ultraestrutura , Sistemas de Secreção Tipo II , Virulência/genética , Fatores de Virulência/metabolismo , Xylella/patogenicidade , Xylella/ultraestrutura
8.
Genome Announc ; 3(5)2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26430043

RESUMO

Here, we report the complete genome sequence of Xanthomonas arboricola pv. juglandis 417, a copper-resistant strain isolated from a blighted walnut fruit (Juglans regia L. cv. Chandler). The genome consists of a single chromosome (5,218 kb).

9.
F1000Res ; 3: 215, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25717364

RESUMO

Duplication of genes is one of the preferred ways for natural selection to add advantageous functionality to the genome without having to reinvent the wheel with respect to catalytic efficiency and protein stability. The duplicated secretory virulence factors of Xylella fastidiosa (LesA, LesB and LesC), implicated in Pierce's disease of grape and citrus variegated chlorosis of citrus species, epitomizes the positive selection pressures exerted on advantageous genes in such pathogens. A deeper insight into the evolution of these lipases/esterases is essential to develop resistance mechanisms in transgenic plants. Directed evolution, an attempt to accelerate the evolutionary steps in the laboratory, is inherently simple when targeted for loss of function. A bigger challenge is to specify mutations that endow a new function, such as a lost functionality in a duplicated gene. Previously, we have proposed a method for enumerating candidates for mutations intended to transfer the functionality of one protein into another related protein based on the spatial and electrostatic properties of the active site residues (DECAAF). In the current work, we present in vivo validation of DECAAF by inducing tributyrin hydrolysis in LesB based on the active site similarity to LesA. The structures of these proteins have been modeled using RaptorX based on the closely related LipA protein from Xanthomonas oryzae. These mutations replicate the spatial and electrostatic conformation of LesA in the modeled structure of the mutant LesB as well, providing in silico validation before proceeding to the laborious in vivo work. Such focused mutations allows one to dissect the relevance of the duplicated genes in finer detail as compared to gene knockouts, since they do not interfere with other moonlighting functions, protein expression levels or protein-protein interaction.

10.
Proc Natl Acad Sci U S A ; 109(10): 3721-5, 2012 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-22355130

RESUMO

We postulated that a synergistic combination of two innate immune functions, pathogen surface recognition and lysis, in a protein chimera would lead to a robust class of engineered antimicrobial therapeutics for protection against pathogens. In support of our hypothesis, we have engineered such a chimera to protect against the gram-negative Xylella fastidiosa (Xf), which causes diseases in multiple plants of economic importance. Here we report the design and delivery of this chimera to target the Xf subspecies fastidiosa (Xff), which causes Pierce disease in grapevines and poses a great threat to the wine-growing regions of California. One domain of this chimera is an elastase that recognizes and cleaves MopB, a conserved outer membrane protein of Xff. The second domain is a lytic peptide, cecropin B, which targets conserved lipid moieties and creates pores in the Xff outer membrane. A flexible linker joins the recognition and lysis domains, thereby ensuring correct folding of the individual domains and synergistic combination of their functions. The chimera transgene is fused with an amino-terminal signal sequence to facilitate delivery of the chimera to the plant xylem, the site of Xff colonization. We demonstrate that the protein chimera expressed in the xylem is able to directly target Xff, suppress its growth, and significantly decrease the leaf scorching and xylem clogging commonly associated with Pierce disease in grapevines. We believe that similar strategies involving protein chimeras can be developed to protect against many diseases caused by human and plant pathogens.


Assuntos
Imunidade Inata , Doenças das Plantas/imunologia , Vitis/imunologia , Vitis/microbiologia , Animais , Proteínas da Membrana Bacteriana Externa/fisiologia , California , Genes de Plantas , Engenharia Genética/métodos , Proteínas de Insetos/química , Peptídeos/química , Doenças das Plantas/prevenção & controle , Folhas de Planta/metabolismo , Fenômenos Fisiológicos Vegetais/imunologia , Caules de Planta/metabolismo , Sinais Direcionadores de Proteínas , Coelhos , Proteínas Recombinantes de Fusão/química , Transgenes , Xylella/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...